Bagging Statistical Network Inference from Large-Scale Gene Expression Data
نویسندگان
چکیده
منابع مشابه
Bagging Statistical Network Inference from Large-Scale Gene Expression Data
Modern biology and medicine aim at hunting molecular and cellular causes of biological functions and diseases. Gene regulatory networks (GRN) inferred from gene expression data are considered an important aid for this research by providing a map of molecular interactions. Hence, GRNs have the potential enabling and enhancing basic as well as applied research in the life sciences. In this paper,...
متن کاملStatistical Inference for Large Scale Data
We introduce a sparse and positive definite estimator of the covariance matrix designed for high-dimensional situations in which the variables have a known ordering. Our estimator is the solution to a convex optimization problem that involves a hierarchical group lasso penalty. We show how it can be efficiently computed, compare it to other methods such as tapering by a fixed matrix, and develo...
متن کاملInference of Gene Regulatory Networks from Large Scale Gene Expression Data
With the advent of the age of genomics, an increasing number of genes have been identified and their functions documented. However, not as much is known of specific regulatory relations among genes (e.g. gene A up-regulates gene B). At the same time, there is an increasing number of large-scale gene expression datasets, in which the mRNA transcript levels of tens of thousands of genes are measu...
متن کاملAnalysis of Large-scale Gene Expression Data
The advent of cDNA and oligonucleotide microarray technologies has led to a paradigm shift in biological investigation, such that the bottleneck in research is shifting from data generation to data analysis. Hierarchical clustering, divisive clustering, self-organizing maps and k-means clustering have all been recently used to make sense of this mass of data.
متن کاملGPLEXUS: enabling genome-scale gene association network reconstruction and analysis for very large-scale expression data
The accurate construction and interpretation of gene association networks (GANs) is challenging, but crucial, to the understanding of gene function, interaction and cellular behavior at the genome level. Most current state-of-the-art computational methods for genome-wide GAN reconstruction require high-performance computational resources. However, even high-performance computing cannot fully ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0033624